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Exact results for quantum chains with multisite interactions 
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Laboratoire de Physique du Solidet, ENSMIM, Parc de Saurupt, F54042 Nancy cedex, 
France and UniversitC de Nancy I, BP 239, F54506 Vandoeuvre les Nancy, France 

Received 21 February 1985 

Abstract. Generalised spin-: and Potts quantum chains with m- ( n - )  site interactions for 
the z ( x )  component of the site variables are shown to be self-dual. Through duality, with 
m arbitrary, n = 2 versions of the models are transformed into m independent k ing  or 
Potts chains in a transverse field, allowing us to get the exact values of the critical exponents 
for any m. 

1. Introduction 

Lattice statistical models with multisite interactions may lead to a rich variety of critical 
behaviour. Among the two-dimensional classical models let us mention the exactly 
solved eight-vertex model (Baxter 1972) which may be formulated as an Ising model 
with two- and four-spin interactions (Wu 1971, Kadanoff and Wegner 1971) and the 
Baxter-Wu model (Baxter and Wu 1974, Baxter 1974) which is an Ising model with 
three-spin interactions on the triangular lattice. The first displays continuously varying 
exponents and the second belongs to the q = 3 Potts universality according to the den 
Nijs (1979) conjecture. Other examples may be found in the review of Nagle and 
Bonner (1976). Multisite interactions are often necessary in order to describe the phase 
diagrams of metallic alloys (Sanchez and de Fontaine 1981) or complex magnetic 
structures (Nagaev 1982). They have also been introduced in an approach to the spin 
glass problem (Derrida 1981, Gross and Mezard 1984). 

In the present work we introduce a new class of one-dimensional spin-4 and Potts 
quantum models with m- (n-) site interactions for the z(x) component of the site 
variables generalising either the Ising model in a transverse field (ITF) (Pfeuty 1970) 
or the quantum Potts chain (Sblyom and Pfeuty 1981, Hamer 1981) (by analogy with 
the spin-; model we call it the Potts model in a transverse field (FTF)). In a series of 
papers (Turban 1982, Penson et a1 1982, Turban and Debierre 1982) the version with 
n = 1, m arbitrary, was studied using duality transformations, perturbation expansions 
and renormalisation group techniques. Here we show that the n = 2, m arbitrary version 
is related through a duality transformation to either the Ising model in a transverse 
field or the Potts model in a transverse field. This allows us to get exact results for 
the critical exponents. After the completion of a preliminary version of this work 
(Turban 1984) we learned that the connection between the anisotropic X Y  chain 
( m  = n = 2, spin-;) and the Ising model in a transverse field had been obtained previously 
through the same duality transformation in the study of the X Y  chain with a defect 
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(Peschel and  Schotte 1984) and  in the study of dimerised chains through a more 
complicated transformation (Jullien and Fields 1978). 

In  0 2 we study the spin-4 quantum chain with multisite interactions. We show that 
the model is self-dual for any values of m and n in 0 2.1. A perturbation expansion 
of the spontaneous magnetisation of the n = 2 model in § 2.2 shows that a simple 
relation with the ITF may be expected. In the next section ( §  2.3) we show, through 
a duality transformation, that this model is equivalent to m Ising chains in a transverse 
field. This result allows us to get the magnetic critical exponents which are m-dependent 
( 0  2.5). The same steps are followed in § 3 in the study of the Potts quantum chain 
with multisite interactions. 

2. Spin-f quantum chain with multisite interactions 

2.1. Self-duality 

Let us consider an  anisotropic spin-; quantum chain with Hamiltonian 
N m - l  N n - l  

z m n ( A ) = - C  n a i ( j + k ) - A  n a x ( j + k )  
, = I  k = O  , = I  k = O  

where the a are Pauli spin operators defined in the usual way: 

The multisite interaction involves the product of m ( n )  successive spin components 
uz (a,) on each of the N sites of a linear chain with free ends. This Hamiltonian 
includes two well known particular cases: the Ising chain in a transverse field when 
m = 1 and  n = 2 (Pfeuty 1970) and the anisotropic X Y  chain (Lieb et a1 1961, Katsura 
1962) when m = n =2 .  A recently studied multisite form of the ITF (Turban 1982, 
Penson et a1 1982, Igloi et a1 1983, Maritan et a1 1984) is recovered when n = 1. All 
these models are known to be self-dual. We show now that this remains true for any 
values of n and m. 

Let the dual spin operators be defined as follows 

(2.3) 

They commute on different sites and satisfy the Pauli algebra on the same site since 

T:(j) = T S ( j )  = 1 

T x ( j ) T z ( A +  7 A j ) ~ ~ ( j )  = 0. 

With the dual Pauli spin operators equation (2.1) may be rewritten as 

(2.4) 

N m - l  N n - l  

j = I  k = O  j = I  k = O  
Z m n ( A ) = - A  ~ , ( j + k ) -  n 7, ( j+k)=ARmn(A- ' )  (2.5) 

so that Xmn is self-dual and  as a consequence, in the thermodynamic limit ( N  -+ CO), 

any phase transition, when unique, must occur at A S  = 1 since any singularity in the 
ground-state energy at A = A, is transformed by duality into a singularity at A = A;'. 
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2.2. Perturbation expansion of the spontaneous magnetisation when n = 2 

We now specialise to the case n = 2, m arbitrary and look for the spontaneous 
magnetisation (u,),,, through a perturbation expansion in powers of A - '  (the bracket 
(. . .), indicates a ground-state expectation value). An external field h, is applied in 
the x direction and the Hamiltonian is written in a form which is more appropriate 
for the A - '  expansion of the ground-state energy per site eo(h,): 

(2.6) 

The first two terms constitute the unperturbed Hamiltonian and the last one is the 
perturbation proportional to A- ' .  Using standard methods (Fradkin and Susskind 
1978, Kogut 1979) one obtains 

1 A-' 2 m + l  A - 4  1 A - 4  
2 2+mh, 8 (2+mh,)3 4 (2+mh,)2(1+mh,) 

-eo(h,)= l+h,+- +- 

1 A - 4  m-I  1 
4 (2+mh,)2,=1 2 + ( m - p ) h X  +- c + O( A - 6 ) .  (2.7) 

Making use of the Feynman-Hellmann theorem, the spontaneous magnetisation is 
given by 

(2.8) 

a result which is consistent with a simple power law 

( C T , ) , = ( ~ - A - * ) " " ~  A 2 1  (2.9) 

for any m. Known exact results are recovered when m = 1 (ITF) P = (Pfeuty 1970) 
and when m = 2 ( X U )  p = f (McCoy 1968). This result led us to conjecture the existence 
of a simple relation between X m 2  and the Ising model in a transverse field. This relation 
is established in § 3 via a duality transformation. 

2.3. Decoupling of the Ising chain with multisite interactions when n = 2 

By making use of the ITF dual variables 

.r,(j)= n u . - ( j + k ) ,  T , ( j )  = g x ( j -  l b , , ( j )  (2.10) 
k 2 0  

the Hamiltonian Xm2(A ) is transformed into 

(2.11) 

i.e. into rn non-interacting ITF. It follows that the ground-state energy per site e,, the 
excitation spectrum w ( k )  and the mass gap w are independent of m and given by the 
ITF exact results (Pfeuty 1970, Kogut 1979) 

4A 
- e , = - ( l + A ) E  ( y  -, 0 ) e=- 

rr ( l + A ) '  

w ( k ) = 4 ( 1 + A 2 + 2 A  COS k )  w =211 - A /  
(2.12) 
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where E is the elliptic integral of the second kind. When an external field is applied, 
the m chains become coupled by the dual of the field term. 

Let us first apply an external field h, in the z direction; it introduces a term 
-h, Z;,", a,( j )  which, by duality, is transformed into a first-neighbour coupling between 
the m chains -h, Z K l  Tx(j)Tx(j+ 1) in the dual system. It follows that for m 2 2 ,  one 
obtains 

(2.13) 

since in the limit one obtains m independent chains with the same spontaneous 
magnetisation which according to equation (2.11) is non-vanishing below A, = 1 .  

An external field applied in the x direction introduces a term -h, Z E l  ux(j)  and 
also couples the dual chains since ax(j) is transformed into nksjT,(k).  The spon- 
taneous magnetisation (ax),,, may then be deduced from the large R behaviour of the 
spin-spin correlation function p x x ( R )  = (ax( j ) a x ( j  + R ) ) ,  in zero external field. 
Through duality p x x ( R )  is transformed into 

(2.14) 

where the last averages (...). are ground-state expectation values taken on the m 
independent chains and R,  is of order R / m .  The inverse duality transformation 
performed on each of the m independent chains leads to m Hamiltonians 

(2.15) 
1. = 1 Jn = 1 

and gives a product of m spin-spin correlation functions such that 

P x x  ( R  = [PKF( R /  m )I". (2.16) 

When R +CO and with A 2 1, the spin-spin correlation functions give the square of the 
spontaneous magnetisation and 

( a x ) m  = [ ( ~ x ) l ~ F l " ' .  (2.17) 

These results will be used to determine the critical exponents of the multisite 
model X m 2 ( A ) .  

2.4. Scaling properties of quantum systems 

In this section we briefly collect several known results concerning the scaling properties 
of quantum systems near a zero temperature critical point which will be used in the 
following sections. 

Under a change of the length scale by a factor b, the excitation energy transforms 
according to 

(2.18) 

where E is a temperature-like variable and y, the associated dimension; h is an external 
field with dimension yh and k the wavevector of the excitation. From equation (2.18) 
one easily deduces the following relations 

w(k)-k '  (2.19) 

w(bk, &bye, hbyh) = b'w(k, E ,  h )  

U( E )  - & S  = E Z / Y ,  (2.20) 
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so that the gap exponent s is related to the correlation length exponent 

U = y ; ’  (2.21) 

s = uz (2.22) 

by the scaling law 

where z is the dynamical exponent. 
The singular part of the ground-state energy per site e, transforms according to 

e,( &by,, hb’h, bq )  = b z + d  eo( E ,  h, 4 1 (2.23) 

since e, is an energy density whereas w is a total energy difference. The q variable 
has been introduced in order to allow for the possibility of a modulated external field 
with amplitude h and wavevector q. The spontaneous magnetisation behaves like 

m ( E )  - & P  = E ( Z + d - Y h ) / Y i  (2.24) 

in the ordered phase and at the critical point: 
m ( h )  - = h(z+d-.vh)/yh 

The zero-field susceptibility is given by: 
X ( E )  - & - Y  = & - ( Z Y ~ - Z - ~ ) / Y ~  

(2.25) 

(2.26) 

and the staggered susceptibility diverges at the critical point like: 

*( q )  - q-v = (2.27) 

The spin-spin correlation function transforms according to 

p ( R / b ,  &by.) = b2(d+z-.vh) P ( R ,  E )  (2.28) 

so that 

and: 

(2.29) 

(2.30) 

(2.31) 

2.5. Critical exponents of the spin-; quantum chain with multisite interactions when n = 2 

The Ising model in a transverse field has been exactly solved (Pfeuty 1970) and later 
shown to be equivalent to a two-dimensional classical Ising model in the extreme 
anisotropic limit (Suzuki 1976, Fradkin and Susskind 1978, Kogut 1979). The critical 
exponents are 

(2.32) 

These results are consistent with 
15 

Y h  = s. Y E  = 1 ,  (2.33) 
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The 'thermal' exponents of Zm, are the same as those of the ITF since the excitation 
spectrum and the ground-state energy per site are the same in both cases. 

The magnetic exponents related to the x magnetisation may be deduced from 
equations (2.17) and (2.16) giving 

P Y ( m )  = f m  (2.34) 

and 

q, , (m) =am (2.35) 

for the decay exponent of the correlation at the critical point. These results lead to 

,vh, ( m )  = 2 - fm (2.36) 

and  using the scaling laws one obtains 

y , ( m ) = ( o o , ( m ) = 2 - h ,  6,( m )  = ( 16/ m )  - 1. (2.37) 

The X Y  exponents are recovered when m = 2 

P X l .  = a, Y X Y  = (oxy = I ,  ax,. = 7;  7 , x y  =;. (2.38) 3 

These results agree with the known values (McCoy 1968) and with a recent calculation 
of the cp exponent (Muller and Shrock 1984). According to equation (2.131, the z 
magnetisation vanishes at A ,  = 1 with 

for any m 2 2. The z magnetic exponents keep their X Y  values for any m b 2 and 

y h z ( m )  =i m z 2 .  (2.40) 

3. Potts quantum chain with multisite interactions 

3.1. Self-duality 

On a linear chain with N sites and free ends, let us associate with each s i t e j  a Potts 
variable (Potts 1952) n, = 0 ,1 , .  . . q - 1 and two Potts operators R,( j )  and R, ( j )  such 
that In,) is an  eigenstate of R J j )  (Kogut 1980, Solyom and Pfeuty 1981) and R = ( j )  
acts like a flip operator on this state 

(3.1) 

i n, + 9) = I n,). 
It will be convenient to use the Hermitian conjugates R l ( j )  = R : - ' ( j )  and R : ( j )  = 
R ! - ' ( j )  such that 
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(3.3) 

The Hamiltonian of the Potts quantum chain with multisite interactions is defined as 
follows 

The first term leads to simultaneous flips of the R, eigenstates on m successive sites 
along the chain whereas the second one is a quasi-Potts interaction (Enting 1975) on 
n successive sites between the R, eigenstates Sq(E:Z;nj tk) .  This results from the 
identity 

When q = 2, one recovers the spin-; Hamiltonian with multisite interactions (equation 
(2.1)). 

The dual operators 

S , ( j )  = n R z ( j -  k n ) R : ( j -  kn - m )  
k P O  

S:( j )  = fl R,( j + k m ) R : ( j  + km + n )  
k a 0  

satisfy the Potts algebra (equation (3.3)) and transform the Hamiltonian into its self-dual 
form 

As a consequence the system is critical when A f  = 1 if the transition is unique. 
The class of Hamiltonians with m arbitrary and n = 2 has interesting properties 

like in the case of spin-;. One may then replace the quasi-Potts interaction in the last 
term by the usual Potts interaction S,,,,,+! (Potts 1952) 

1 N q - 1  m - l  N q-1 A 
Xm2(A)=-- 1 1 (n R : ( j + k ) + H c  (R:( j )R:p( j+l)+Hc).  (3.8) 

2 q J = l p = l  k = 0  

The self-duality is obtained by using the dual operators 

S , ( j ) =  n ~ ' R , ( j - k + l )  
k a O  1=0 

S : ( j ) =  n R : ( j - k m + l ) R $ ( j - k m ) R ~ ( j - k m - l ) .  
k = O  

(3.9) 

When M = 1 we recover the QTF which is equivalent to the two-dimensional classical 
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Potts model in the extreme anisotropic limit. The model with m = 2 is the analogue 
of the anisotropic XY chain. 

3.2. Perturbation expansion of the spontaneous magnetisation when n = 2 

The Hamiltonian %‘,,,*(A) may be rewritten under a form which is appropriate for a 
A - ’  expansion of the ground-state energy per site 

Z m 2 ( A ) / A  = %’,+ V +  N / q  (3.10) 

where 

(3.11) 

R0 is diagonal in the basis of the eigenstates In,) of the R, operator and includes the 
interaction with the external field h, applied ‘in the x direction’ and favouring the 
state n, = 0. The perturbation V acts as a flip operator on this basis. 

The x spontaneous magnetisation is given by 

(3.12) 

where e,( h,) is the field-dependent ground-state energy per site. Using standard 
methods (Kogut 1979, 1980), we obtain 

mA -’ ( q  - 2 )  mA-’ 1 5( q - 2 )  m+ 3 m ( m  - 1)( q - 2 )  
4q 4q2 --( 4’ 9 32 

(m,),,, = 1 

) - 4 + o ( A  - 5 ) .  (3.13) 
15m + m 2 - ( q  - i ) m ( 2 m + 7 ) +  12m(q -2)2  

16 
+ 

The spin-; expansion is recovered when q = 2. With m = 1 ,  one gets the FTF x magneti- 
sation 

A - *  ( q - 2 ) ~ ’  1 1 6 - 9 ( q - 1 ) + 1 2 ( q - 2 ) 2 ) A - 4  
16 

(m,),,= 1 
4q  4q2 

+ o ( A - ~ )  (3.14) 

and, to this order, the relation 

( m x ) m  = ((mx)WFlm (3.15) 

is verified, like in the spin-; case and one may expect a decoupling into m independent 
FTF as above. 

3.3. Decoupling of the Potts quantum chain with multisite interactions when n = 2 

The decoupling of the Potts quantum chain with m-site interactions into m independent 
Potts chains in a transverse field may be performed through a duality transformation. 
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The appropriate dual operators are still the self-dual operators of the chain in a 
transverse field (equation (3.9) with rn = 1): 

S 2 j )  = R , ( j ) R X j +  1) 

and the transformed Hamiltonian is 

(3.16) 

A N q - 1  1 N q - 1  

2q,=1 p = l  2q,=1 p = l  
% f m , ( A ) = - -  (s t ( j )+HC)--  c ( s ~ ( j ) s ~ ( j + m ) + H C ) .  (3.17) 

The self-duality transformation was actually obtained by first decoupling the system 
into rn independent chains. The known self-dual operators of the PTF were then used 
to obtain equation (3.9) via the inverse transformation. 

According to equation (3.17) the zero-field ground-state energy and the excitation 
spectrum of the multisite model with n = 2 are the same as for the PTF. The z- 
spontaneous magnetisation: 

is transformed into 

(3.18) 

(3.19) 

when m 
chains. A new duality transformation 

2. (. . JnF is a ground-state expectation value on one of the m independent 

where a = 1 ,  m refers to one of the FTF, which leads to 

(3.20) 

(3.21) 

In the last term nksO T i P ( j ,  + k )  creates a kink at j ,  between the ground state and 
one of the (9 -  1) remaining degenerate ground states of the chain a. The Potts 
permutation symmetry between these states ensures that Ap = A is independent of p .  
It follows that 

( r n z ) m  = = (mx)$TF (3.22) 

since the FTF magnetisation is given by 
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In order to get the x spontaneous magnetisation of the multisite model ( m x ) m  
defined in equation (3.12), we study the order parameter correlation function (Wu 1982) 

which may also be written 

(3.24) 

(3.25) 

where P (  R )  = ( 8,,,fl,+R)m is the probability to find the Potts states at j and j + R in the 
same eigenstate of R,. The duality transformation (equation (3.16)) gives 

(3.26) 

where the expectation value is taken on the ground state of the chain a and R ,  is of 
order R / m .  The operator in the bracket creates a domain wall of length R,  between 
the ground state of the chain a and one of the q - 1 other degenerate ground states. 
Due to the permutation symmetry between these states, its expectation value 

is independent of the index p .  Let T ( R , )  be the common value, then 
m 

P A R ) =  n UR,) .  
, = I  

On the chain a, the FTF order parameter correlation function is 

(3.27) 

(3.28) 

(3.29) 

and the self-duality transformation of equation (3.20) leads to 

(3.30) p x x  PTF ( R a ) = L u f l ( (  fi T : P ( j , + k )  
2(q- l )p=I  k = O  

which, together with equation (3.28), gives 

Pxx(R) = [ P z F ( R / m ) l m .  (3.31) 

In the ordered state A 3 1 and in the limit R + m, the order parameter correlation 
function gives the square of the magnetisation and 

( m x ) m  = ( m x ) k  (3.32) 

in agreement with the result of the perturbation expansion. 

3.4. Critical exponents of the Potts quantum chain with multisite interactions when n = 2 

The Potts model in a transverse field is equivalent to the two-dimensional classical 
Potts model in the extreme anisotropic limit for which the thermal and magnetic 
exponents are known (den Nijs 1979, Black and Emery 1981, Nienhuis et al 1980, 
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Pearson 1980, Wu 1982) 

y ,  =3(1-  ~ ) / ( 2 -  U )  q s 4  

yh = (3- U)(5-u)/4(2- U )  

o s  U = (2/7r) cOs- ’ (Jq /2)<  1. 

Using the results of § 2.4 one gets the PTF exponents 

s = v = (2-  ~ ) / 3 ( 1  -U), z = l  

(3.33) 

(3.34) 

l + u  7-4u + u2 7 - 4 u +  u z  

(3 - u)(5 - U )  
1 - u 2  ’ 

p=-- 
12 ’ ”‘ 6(1 -U)  ’ (9= 2(2-U) ; 

q = m *  

(3.35) 
1 - u z  

6 =  

Since the quantum Potts model with m-site interactions has the same ground-state 
energy and excitation spectrum as the FTF, its thermal exponents are also given by 
equation (3.34). The magnetic exponents follow from the results of § 2. Equation 
(3.32) gives 

P x ( m ) =  m ( l + u ) / l 2  (3.36) 

and using equation (3.31) at the critical point, one gets the decay exponent 

q x ( m ) =  m(l-u2)/2(2-u) .  (3.37) 

These values are consistent with 

The scaling laws give 

4(2- U )  - m(1- U‘) m(1-U’) 
2(2 - U )  ’ ccx(m) = 2-  6 ( 1 - ~ )  ’ r x ( m )  = 

(3.39) 
8(2- U )  

= m ( l - u ’ ) - l .  

The z exponents, which are m-independent, may be deduced from equation (3.22) 

(3.40) 

The critical exponents of the analogue of the X Y  model ( m  = 2) are given in table 1 
for O s q s 4 .  

Table 1. Critical exponents of the quantum Potts analogue of the anisotropic XY chain. 

4 u  Y e  Y h  P Y Q s 1) V Z 

I 0 1  0 2 5 00 2 ‘x 0 ‘x 1 

5 5 1 

9 9 2 1 
I 7 t 1* P 2 ;  1 a a I 

4 0  I a 6 1 I 7 I 5 1 

3 5 5 5 43 - - 19 - I 9  43 - 
I2 12 

7 3 1 1 
6 2 5 

6 
1 1  26 3 f  5 1 5  

3 7 I 3 1 2 

1 ;  24 

- - 22 - 13 - 
15 15 

- 
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4. Discussion 

Let us briefly discuss some possible extension of the present work. The Potts Hamil- 
tonian Zm2 has been written with a Potts interaction for the x component and a 
quasi-Potts interaction for the z component with m-site interactions. Although the 
Potts interaction is more complicated in a multisite term, it would be preferable to 
have the same type of interactions for both components. It is not clear whether the 
methods used here will remain applicable in this situation. 

Until now there are no standard notations for the Potts operators. The ones used 
in this work were introduced in order to make clear the analogy with the Pauli spin-; 
operators. They also suggest the introduction of a third operator R, to complete this 
analogy. Using the complete set of Potts operators, one may study quantum Potts 
models of the Heisenberg type. Work in this direction is in progress. 

References 

Baxter R J 1972 Ann.  Phys., N Y  70 193-228 

Baxter R J and Wu F Y 1974 Ausf. J. Phys. 27 357-67 
Black J L and Emery V J 1981 Phys. Reo. B 23 429-32 
den Nijs M P M 1979 J. Phys. A :  Mafh. Gen.  12 1857-68 
Derrida B 1981 fhys. Rev. B 24 2613-26 
Enting I G 1975 J. Phys. A: Math. G e n .  8 1690-6 
Fradkin E and Susskind L 1978 fhys. Rev. D 17 2637-58 
Gross D J and Mezard M 1984 Nucl. fhys. B 240 FS12 431-52 
Hamer C J 1981 J. Phys. A: Mafh. G e n .  14 2981-3003 
Igloi F, Kapor D, Sdlyom J and Skrinjar M 1983 J. Phys. A :  Mafh.  Gen.  16 4067-71 
Jullien R and Fields J N 1978 Phys. Left. 69A 214-6 
Kadanoff L P and Wegner F J 1971 Phys. Reo. B 4 3989-93 
Katsura S 1962 fhys. Rev. 127 1508-18 
Kogut J B 1919 Rev. Mod. Phys. 51 659-713 
- 1980 Phys. Rev. D 21 2316-26 
Lieb E, Schultz T and Mattis D C 1961 A n n .  Phys., N Y  16 407-66 
Maritan A, Stella A and Vanderzande C 1984 fhys. Reo. B 29 519-21 
McCoy B M 1968 Phys. Reo. 173 531-41 
Muller G and Shrock R E 1984 Phys. Rev. B 30 5254-64 
Nagaev E L 1982 Sou. Phys.-Usp. 25 31-57 (1982 Usp. Fiz. Nauk 136 61-103) 
Nagle J F and Bonner J C 1976 Ann.  Reo. Phys. Chem. 27 291-317 
Nienhuis B, Riedel E K and Schick M 1980 J. Phys. A :  Marh. Gen.  13 L189-92 
Pearson R B 1980 fhys. Reo. B 22 2579-80 
Penson K, Jullien R and Pfeuty P 1982 Phys. Rev. B 26 6334-7 
Peschel I and Schotte K D 1984 Z. Phys. B 54 305-11 
Pfeuty P 1970 Ann.  fhys., N Y  57 79-90 
Potts R B 1952 h o c .  Camb. Phil. Soc. 480 106-9 
Sanchez J M and de Fontaine D 1981 in Strucfure and Bond in Crystals vol2, ed M O’Keeffe and A Navrotsky 

Sdlyom J and Pfeuty P 1981 Phys. Reo. B 24 218-29 
Suzuki M 1976 h o g .  Theor. fhys. 56 1454-69 
Turban L 1982 J. Phys. C: Solid Stale Phys. 15 L65-8 
- 1984 Phys. Left. 104A 435-7 
Turban L.and Debierre J M 1982 J. Phys. C: Solid Srate Phys. 15 L129-35 
Wu F Y 1971 Phys. Reo. B 4 2312-4 
- 1982 Reo. Mod. fhys. 54 235-68 

- 1974 Aust. J. Phys. 27 369-81 

(New York: Academic) p 117 


